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The longest path problem is the problem of finding a simple path of maximal length in a
graph; in other words, among all possible simple paths in the graph, the problem is to find
the longest one. For an unweighted graph, it suffices to find the longest path in terms of the
number of edges; for a weighted graph, one must use the edge weights instead. To explain
the process of developing this algorithm, we’ll first develop an algorithm for computing
the single-source longest path for an unweighted directed acyclic graph (DAG), and then
generalize that to compute the longest path in a DAG, both unweighted or weighted.

We’ve already seen how to compute the single-source shortest path in a graph, cylic
or acyclic — we used BFS to compute the single-source shortest paths for an unweighted
graph, and used Dijkstra (non-negative edge weights only) or Bellman-Ford (negative edge
weights allowed) for a weighted graph without negative cycles. If we needed the shortest
path between all pairs, we could always run the single-source shortest path algorithm using
each vertex as the source; but of course there is Floyd-Warshall ready to do just that. The
use of dynamic programming or a greedy algorithm is made possible by the fact the shortest
path problem has optimal substructure — the subpaths in the shortest path between two
vertices must themselves be the shortest ones!

When it comes to finding the longest path however, we find that the problem does not
have optimal substructure, and we lose the ability to use dynamic programming (and of
course greedy strategy as well!). To see that the longest path problem does not have optimal
substructure, consider the graph in Fig. 1. The longest path from A to E is A–B–C–D–E.
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Figure 1: Optimal substructure for the longest path problem
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This goes through B, but the longest path from B to E is not B–C–D–E. It’s B–C–A–D–
E. This problem does not have optimal substructure, which means that we cannot solve it
using dynamic programming. Well, why not simply enumerate all the paths, and find the
longest one? Because, there can be exponentially many such paths! For example, in the
graph shown in Fig. 2, there are 2n different paths from vertex 1 to n.1
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Figure 2: Number of paths in a DAG

Fortunately, the longest path in a DAG does have optimal substructure, which allows
us to solve for it using dynamic programming (there’s a trivial greedy algorithm for single-
source longest path: for each vertex in the linearized order, relax each adjacent vertex). I
will use the description used in Algorithms by Dasgupta, Papadimitriou and Vazirani (Ch.
4).

Let’s start with the DAG G, shown in Fig. 3, as an example and see how we can develop
a dynamic programming solution for the single-source longest path problem. Remember
that a DAG can always be topologically sorted or linearized, which allows us to traverse the
vertices in linearized order from left to right. To see how this helps, look at the linearized
version of G, whose vertices, taken in the linearized order, are then: {S, C,A, B, D, E}.
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Figure 3: A DAG (top left) and its linearized version (bottom)

As I said earlier, before we tackle the problem of the finding the longest path in the
graph, let’s first consider the problem of finding the longest path from vertex S to any other
vertex. Consider the vertex D in the linearized graph — the only way to get to D from S is

1Do you see why? Each vertex in the “top row” or the “bottom row” is either in a path or not, just like
in a binary number; there are n such vertices in top or bottom row, which gives us 2n possible paths among
the 3n + 1 vertices.
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through one of its predecessors: B and C. That means, to compute the longest path from
S to D, one must first compute the longest path from S to B (up to the first predecessor),
and the longest path from S to C (up to the second predecessor). Once we’ve computed
the longest paths from S to these two predecessors, we can compute the longest path to D
by taking the larger of these two, and adding 1. If dist(v) is the longest distance from S to
vertex v, and α(v) is the actual path, then we can write the following recurrence for dist(D):

dist(D) = max{dist(B) + 1, dist(C) + 1}

Note the subproblems here: dist(B) and dist(C), both of which are “smaller” than dist(D).
Similarly, we can write the recurrences for dist(B) and dist(C) in terms of its subproblems:

dist(B) = dist(A) + 1

dist(C) = dist(S) + 1

and so on for each vertex. For a vertex with no incoming edges, we take the maximum over
an empty set, which results in an expected distance of 0. Or, we can explicitly set the base
case dist(S) and α(S) for the source vertex S, as follows:,

dist(S) = 0

α(S) = {S}

For G, by inspection, dist(B) = 3 and dist(C) = 1, which tells us that dist(D) = max{3 +
1, 1 + 1} = 4, a fact easily verified by inspection. The corresponding actual longest path
from S to D, through B, is α(D) = α(B) ∪ {D} = {S, C,A, B, D}, again easily verified by
inspection. We are now ready to write the recurrence for the longest path from S to any
other vertex v in G, which involves first computing the longest paths to all of v’s predecessors
from S (these are the subproblems).

dist(v) = max(u,v)∈E{dist(u) + 1}

And we see how we can start from S, find the longest paths to all the vertices by traversing
from left to right in linearized order. For a graph G = (V, E), the algorithm is shown below.

for each vertex v ∈ V in linearized order
do dist(v) = max(u,v)∈E {dist(u) + 1}

If there are no edges into a vertex (ie., if in-degree[v] = 0), we take the maximum over an
empty set, so dist(S) will be 0 as expected. To implement this algorithm, we need to know
the predecessor of each vertex, and the easy way to have that information to compute Grev,
which is G with each edge reversed. The algorithm is obviously O(|V | + |E|).

Now that we’ve computed the longest path from S to all the other vertices v ∈ V , let’s
now look at our original problem of finding the longest path in G. It so happens that the
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subproblems {dist(v), v ∈ V } that we solve give us the longest path ending at some vertex
v ∈ V . The longest path in G then is simply the largest of all {dist(v), v ∈ V }!

longest-path(G) = maxv∈V {dist(v)}

And, we can compute this bottom-up for each vertex v ∈ V taken in a linearized order. The
final algorithm is shown below:

longest-path(G)

� Input: Unweighted DAG G = (V, E)
� Output: Largest path cost in G
Topologically sort G
for each vertex v ∈ V in linearized order

do dist(v) = max(u,v)∈E {dist(u) + 1}
return maxv∈V {dist(v)}

What would we do if we instead had a weighted DAG? Each edge would then contribute
its edge weight, instead of 1, to the path cost. Fig. 4 shows an example weighted DAG
G with its topologically sorted version. For a weighted graph G = (V, E), and with edge
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Figure 4: A weighted DAG (left) and its linearized version (right)

weights w(u, v), the algorithm is then:

longest-path(G)

� Input: Weighted DAG G = (V, E)
� Output: Largest path cost in G
Topologically sort G
for each vertex v ∈ V in linearized order

do dist(v) = max(u,v)∈E {dist(u) + w(u, v)}
return maxv∈V {dist(v)}

The modification to return the actual path α(·) along with dist(·) is left as an exercise.


